A Novel Reconfigurable Membership Function Circuit for Analog Fuzzy Logic Controller

Ngai Kong, Seng-Pan U¹ and R.P. Martins ²

Analog and Mixed-Signal VLSI Laboratory, FST, University of Macau, Macao, China (E-mail: benspu@umac.mo)
1 – Also with Chipidea Microelectronics (Macao) Ltd., 2 – On leave from Instituto Superior Técnico/UTL, Lisbon, Portugal

Abstract--A novel reconfigurable membership function circuit (RMFC) for analog fuzzy logic controller (FLC) is presented. The reconfigurable characteristic makes it more suitable in industrial control applications when compared with the MFC proposed in [1]. By proper signal arrangement, the RMFC can re-sample the same input current in different configuration, which reduces the number of MFC in analog FLC. Thus, the power consumption and circuitry are smaller than the MFC proposed in [2]. The full current mode circuitry ensures a low power supply voltage and high speed. The analog input signal is processed directly without any need of an A/D or D/A interface. SPECTRE simulation results validate the feasibility of the proposed RMFC that is implemented in 0.35-μm CMOS with a battery of 1.5-V supply.

Key Words--Fuzzy logic controller (FLC), Membership function circuit (MFC), low voltage, current mode.

Introduction

Fuzzy logic is designed to mimic the human thinking process by incorporating the uncertainty inherent to all physical systems [3]. Relying on the human nature of the fuzzy logic, an increasing number of successful applications have been developed, such as automatic process control, pattern-recognition systems, fuzzy neurons, chaos, etc. Rapid developments in semiconductor, computing, and communication technologies turned portable devices such as personal digital assistants and laptops with wireless connectivity in powerful and ubiquitous equipments. Moreover, a new generation of sensors called “smart” sensors consists of three basic elements; a physical transducer, a controller/memory core and a network interface [4]. The physical transducer senses the physical quantity and converts it to an electrical signal. The signal is fed to an A/D converter to produce a digital value for use by the controller. On the other hand, the analog to digital (A/D) converter circuit or the (D/A) occupies a considerable amount of resources in a portable device. Smart sensors or portable devices equipped with analog FLC have a bright future because their compatibility with the analog fuzzy world is higher. Moreover, analog FLC usually presents better performance than digital implementations in real-time control systems when speed is a concern. Also, current mode circuits exhibit a good potential since using current as a signal carrier implies no restrictions from the supply voltage. Moreover, simple current basic building blocks easily fulfill a small circuitry requirement, as well as high speed.

This paper presents a novel reconfigurable membership function circuit for switched-current mode analog FLC. Its reconfigurable characteristics and low supply voltage are attractive for portable devices and smart sensors.

Fuzzification strategies

A FLC consists of four fundamental units: fuzzification unit, inference unit, defuzzification unit and rule base unit as shown in figure 1.
Inference Unit

Defuzzification

Fig. 1 FLC architecture block diagram.

The fuzzification unit provides a fuzzy partition of the input and output universes of discourse of the different variables as well as a choice of the membership function which describes each fuzzy set. Concerning the input variables, the fuzzification operation is performed by circuits known as membership function circuits (MFC’s). Several classes of parameterized functions are used to define membership functions: triangles and trapezoids are popular in industrial control applications due to their simplicity while Gaussian, sigmoidal, or bell-shaped functions are especially used in adaptive neuro-fuzzy systems. Membership functions can be reconfigured as S-shapes, Z-shapes, triangles, and trapezoids is the design goal since they are popular in industrial control applications and can be easily implemented by current mode CMOS circuits.

To understand the mathematical operations involved in an MFC, let us discuss three strategies to generate symmetric trapezoidal functions illustrated in figure 2.

1) The fuzzifier operation shown in figure 2(a) is carried out as follows:
\[\text{fuzzy}(x) = x \cdot \Theta(m(x, \Theta x)) + m(x, \Theta x) \]
where \(\Theta \) is a rectification or bounded difference operator defined as:
\[\Theta = \begin{cases} 0 & \text{if } a > b \\ a - b & \text{otherwise} \end{cases} \]
Current-mode realizations that implement this operation have been proposed in [6].

2) The technique illustrated in figure 2(b)

3) The strategy proposed by the authors in [8] employs the parameters depicted in figure 2(c). It realizes the following transformation:
\[\text{fuzzy}(x) = x \cdot \Theta(m(x, \Theta x)) + m(x, \Theta x) \]
In any case, the basic mathematical operations required are addition(+), subtraction(-), rectification(\(\Theta \)), and scaling(m).

Figure 2 Strategies to generate membership functions

The strategy of the proposed RMFC in this paper is based on strategy c, which is carried out as equation 4 and illustrated in figure 2(c). Since there is no need of duplicating the input current as the circuit proposed in [9], the power consumption will be lowered.

1) The fuzzifier operation shown in figure 2(a) is carried out as follows:
\[\text{fuzzy}(x) = x \cdot \Theta(m(x, \Theta x)) + m(x, \Theta x) \]
where \(\Theta \) is a rectification or bounded difference operator defined as:
\[\Theta = \begin{cases} 0 & \text{if } a > b \\ a - b & \text{otherwise} \end{cases} \]
Current-mode realizations that implement this operation have been proposed in [6].

2) The technique illustrated in figure 2(b)

3) The strategy proposed by the authors in [8] employs the parameters depicted in figure 2(c). It realizes the following transformation:
\[\text{fuzzy}(x) = x \cdot \Theta(m(x, \Theta x)) + m(x, \Theta x) \]
In any case, the basic mathematical operations required are addition(+), subtraction(-), rectification(\(\Theta \)), and scaling(m).
self-biased wide swing SI memory cell, low voltage and high performance current rectification circuit, current absolute subtraction circuit and wide swing cascode digital weight current mirror.

(A) Self bias wide swing SI memory cell
The basic cell in the proposed circuit would be the SI memory cell. In SI circuits, using current as the signal carrier imposes that the impedance at every node is low. The settling time of a SI memory cell, with the structure shown in figure 5, is determined by the time constant given by

$$\tau = \frac{C}{g_m}$$

(5)

where C is the total capacitance at the gate of the memory transistor M_0 and g_m is the trans-conductance of the same transistor. The simplest way to raise g_m is to increase the W/L ratio of the MOSFET. However, since the total capacitance will also be increased simultaneously, it would be necessary to use a cascode transistor in the output MOSFET avoiding a heavy increase in the capacitance, at the sacrifice of voltage headroom. So, a self-bias wide swing current mirror is proposed in the thesis as illustrated in figure 6 to lower the signal distortion and supply voltage.

g_m is to increase the W/L ratio of the MOSFET. However, since the total capacitance will also be increased simultaneously, it would be necessary to use a cascode transistor in the output MOSFET avoiding a heavy increase in the capacitance, at the sacrifice of voltage headroom. So, a self-bias wide swing current mirror is proposed in the thesis as illustrated in figure 6 to lower the signal distortion and supply voltage.

Figure 3 Block diagram of the proposed RMFC.

Figure 4 Different kind of transfer function.

Figure 5 First generation SI memory cell.

Figure 3 shows the block diagram of the proposed RMFC Its input-output characteristic can be assigned by external signals such as I_c, I_{sat}, I_h, and K as illustrated in figure 4. I_c is the middle point of the membership function while I_{sat} is the width of the shoulder. When I_{sat} is zero, a triangular-shape is formed as shown in figure 4(b). Similarly, a Z-shape is formed when I_c is zero and a S-shape is formed when I_c is the maximum value in the universe of discourse, which are shown in figure 4(c) and (d). K is the slope of the membership function and I_h is the maximum output current. Therefore the shape of the membership function can be fine tuned independently by external signals. Similar MFCs have been reported but some of them are either fixed parameters or poor in adjustment and the others are incompatible of low supply voltage.

The following full current mode circuits consist of the proposed RMFC circuit. They are

Figure 3 Block diagram of the proposed RMFC.

Figure 4 Different kind of transfer function.

Figure 5 First generation SI memory cell.

The following full current mode circuits consist of the proposed RMFC circuit. They are
The current rectification circuit realizes equation (2) is based on the circuit mentioned in [10]. Figure 7 shows a highly linear current subtraction circuit with low voltage supply requirements. It is used to obtain the subtraction of Ia and Ib at a high swing, high impedance output node. The circuit consists of three self bias wide swing cascode current mirrors, which reduces voltage and current biasing requirements and raise the precision in current rectification circuit.

(C) Current absolute subtraction circuit

The proposed absolute subtraction circuit, which is shown in figure 8, consists of a current rectification circuit as mentioned above, and a high-speed current comparator. The absolute subtraction circuit gives the absolute difference between Ia and Ib. Mn1 and Mp2 work as the source follower. Mn2 and Mp2 work as the current comparator. When Ia< Ib, V is logic low and Mp1 is on. The difference current between Ia and Ib flows through Mp1 to output node. When Ia< Ib, V is logic high and Mn1 is on. The difference current between Ia and Ib flows through Mp3 and Mp4. Since Mp3 and Mp4 are self biased, Mp5 and Mp6 mirror this difference current. Thus making the output current equals the absolute difference value between Ia and Ib.

(D) Wide swing cascode digital weight current mirror

The precision of current mirror is affected by gm, a practical way to enlarge the gm is to cascode a MOSFET in wide swing structure avoiding large voltage headroom. Figure 9 is a self bias wide swing cascode digital weight current mirror, which can achieve high precision under low voltage supply and high speed performance.
The analog cells mentioned above compose the proposed RMFC circuit as illustrated in figure 3 and the overall circuit implementation was achieved by using a 0.35-µm CMOS technology with a 1.5-V supply. The universe of discourse is 100µA and the full grade of membership can be set to as large as 100µA. In consideration of speed, a bias current of 50µA is added.

Figure 10 shows different shapes, such as S-shape, Z-shape and trapezoidal-shape, generated by the proposed RMFB with different I_c. The other parameters such as I_{sat}, I_h and K can also be tuned independently, thus giving the RMFC circuit a wide range of application. Figure 11(a) shows the transient response of the proposed RMFB with parameters listed in table 1. Figure 11(b) is the DC response with the same parameters. The ideal output is 125µA and the full range of application. The achieved accuracy is 98% satisfactorily fulfilling the requirement of most fuzzy logic systems.

Acknowledgment
This work is financially supported by the University of Macau under the research grant with Ref No. RG069/02-03/MR/FST and its extensions.

References
Implementation of Fuzzy and Neurofuzzy Systems, IEEE 05EX1097 2005, 378-381

